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Summary

The paper deals with the planning and analysis of a series of experiments carried
out in some incomplete split-plot designs.

There are experiments in which treatments occur on many levels. Usually, on
account of the limited structure of experimental material and because of costs, it is not
possible to use a complete design. In such a case some incomplete split-plot design may
be very useful. .

The aim of the paper is to present the problems connected with the planning and
analysis of a series of experiments (repeated over many environments), where every
single experiment is of a split-plot type.

The considered single designs can be incomplete with regard to the whole-plot
treatments or with regard to the sub-plot treatments.

In the paper we adapt the linear model called the randomization model. Our model
is based on the three step randomization performed in every environment, i.e.
randomization of blocks, randomization of whole-plots within each block, and
randomization of sub-plots within each whole-plot of each block. We assume that the
environments are not randomized. Additionally, some assumptions concerning
additivity and statistical properties of the so called technical errors are also adopted.

The incomplete split-plot designs are assumed to have an orthogonal block
structure. Hence, the appropriate analysis of multistrata experiments is adapted.

In the last part of the paper, the statistical properties of some incomplete split-plot
designs generated by certain incomplete block designs are examined.

1. Introduction

Let us consider a two-factor experiment of the split-plot type in which the
first factor, A, (whole-unit treatments) occurs on S levels A, Ay,...,Ag, and the

second factor, B, (sub-unit treatments) occurs on 7' levels B 1> Bg,..., Bp.

Key words: split-plot design, series of experiments, incompleteness, factorial
structure, BIBD, PBIBD(2), efficiency factors
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Let a population of units (set of potential units) in an environment be divided
into b blocks and let each block be additionally divided 1nto k whole-units while
each whole-unit is divided into ¢ sub-units.

We assume that in each environment P, the experimental material structure
is the same, g = 1,2,...,d, where d denotes the number of environments. It means
that in each environment we have ny = bkt units.

The proposed design finds many applications inagricultural field experiments,
then it is convenient to call units as plots. Such a convention will be used in the
paper.

2. Linear model and its analysis

Let D ={D,, Dy,..., D;} be the theoretical design of whole experiment. The

sub designs D}, Ds,..., D, may be the same or different in environments but they
have to use the same structure of an experimental material.

In the paper we use linear model called randomization model (cf. Nelder, 1965;
Mejza, 1987). Our model is based on the three step randomization, i.e., randomi-
zation of blocks, randomization of whole-plots within each block, randomization
of sub-plots within each whole-plot of each block, performed independently in all
environments. We assume that the environments are not randomized. It means
that all the treatment effects, including the environment effect, are considered
to be fixed.

The linear model of the yield obtained in the split-plot design in the g-th
environment can be written in the form (cf. Mejza and Mejza, 1994):

Y Agrg + D & G Mgt gt e, 2.1)

where Y, is an ngx1 vector of yields, A} is an nyxST design matrix for treatment
combinations, T, is an .STx1 vector of treatment combinations effects, D, is an

noxb design matrix for blocks, p, is a bx1 vector of block effects, G, is an

o
noxbk design matrix for whole-plots, m, is a bkx1 vector of whole-plot errors,
¢, and e, are nyxl vectors of the sub-plot and technical errors, respectively,
g=12,..d.

The structure of the dispersion matrix of modct (2.7} resulting from the
randomization described above, has the form:

Cov(Y,) =V,=D,V, D, +G,V,, G, +V,, + 0ol (2.2)

8 gp getng 2

where V= Cov(p,) = 05,1, _b“"J,)) V,, = Cov(n,) = 05 1,® (I, - k~'Jy),
V,. = Cov(g,) = ogelbk@(l ~t7'J), o>, and 0 , denote the block variance and
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the whole-plot error variance, respectively, 035,

variance and the technical error variance, respectively, forg = 1,2,....d , ® stands
for the Kronecker product of matrices, I, denotes the identity matrix of order

036 denote the error (sub-plot)

x and J,=1.1,, with 1, denoting the vector of ones. All covariances are equal
to zero. It results from the independent randomization and from assumptions
concerning technical error term.

The problem is how to extend model (2.1) to the case of experiments conducted
in d environments. We need some additional assumptions. Let us note that the
structure of experimental material is assumed to be the same in the environments
and the same scheme of randomization is assumed to be performed at every
environment. Hence, we may assume in the paper that the dispersion structure
of random terms in model (2.1) is the same in all environments, i.e.
0§p = oi, 03,] = 0;21, 055 = o’ 036
of the same structure of experimental material in each environment, we have
D.=D', G,=G, g=1,2,....d. It is assumed that the environments influence only

2
= o,, forevery g = 1,2,...,d . Moreover, on account

the yield expected value.

In the paper, by the treatment we will mean the treatment combinations
P,A,B;, g= 1,2,..d, w=12,.,S, j=12,..T, while by the effect of the
treatment we will mean:

T = W+ T, + Oy + B+ () g, + (7B + (0B + (o) gy (2.3)
g=12,...d, w=12,..S, j=12,..T,

where 1 denotes the general parameter, m, denotes the effect of the g-th envi-
ronment P, c,, denotes the effect of the w-th level of factor A, p; denotes the
effect of the j-th level of factor B and (mer),,, (P)y, (@B)y,; (weP),,,; stand for
interaction effects.

Let v=dST denote the number of treatments (three-way treatment combi-
nations: environments x whole-plot treatments x sub-p}ot treatments).

Using all assumptions described above, the final linear model for observed
yield can be written as:

v=At+D"p +G'q +¢" +e, (2.4)

where y is an nx1, n =dn, , vector of observations, y = (y}, ¥5...,yy) ', A’ is an
nxv design matrix for treatments, t is a vx1l vector of treatment parameters,
D" is an nxbd design matrix for blocks, p° is a dbx1 vector of block effects,
G"' is an nxbkd design matrix for whole-plots, " is a-dbkx1 vector of whole-plot

errors, ¢’ ande” are nx1 vectors of the sub-plot and technical errors, respectively.
The dispersion matrix of model (2.4) has the form
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Cov(y)=V=D"V,D" + G"'V;G" + V. + oI , (2.5)

Where ‘f; = Id ® VF,, V; = Id ®V“, V: = Id ® Vm D*’ = Id @ D’, G*' = Id ® G’.
The approach proposed by Nelder (1965) to the analysis of multistrata experi-

ments possessing orthogonal block structure will be adopted. In the considered
case (cf. Mejza, 1987) the set of matrices (projectors):

Py=1,0P; Py=ng'd,, r(Pg) = d,
Pi=1,0P,, P=G)'DD-ng'd,, P} =db-1),
P,=1,®P,, P,=t"'G'G- (kt.)"lD’D, r(P3) = db(k-1),
P;=1,0P;, P,=1-t"'G'G, r(P}) = dbk(t-1),

plays an important role. These matrices are idempotent, pairwise orthogonal and
their sum is the identity matrix. Moreover, Pi1,=0, f=1,2,3.

Dispersion matrix (2.5) can be written as: V = YoPo + v, P} + yoP5 + voP} , where
Yo = 03, Y1 = tkoi + 03, Yo = to,z} + 03, Vg = 0? + 03.

The overall analysis of the model (2.4) can be divided into the so called strata
analyses, i.e. the analyses which are based on strata’s models:

yf: PFY; E(yj) = P/*‘A,ya COV(.yf) = y}P/*v f= 03132’3 . (2~6)

(For details of the above procedure see Nelder, 1965; Houtman and Speed, 1983).
Applying the least squares method to models (2.3), the normal equations for
estimation of T are of the form:

Cf'l}';)' = Q/' 5 (27)

where C;=AP/A', Q;=APJy, f=0,1,2,3.

Let Ny =AD" and N, =AG" be treatments vs. blocks and treatments vs.
whole-plots incidence matrices. Let us note that A’ = diag(A}, A),..., A)), where
A, is the design matrix for treatments in the g-th environment, g = 1,2,....d.

Let us consider the treatment structure of the design with respect to estima-
bility property of some linear treatment functions in each stratum.
In the zero stratum we have:

_ TP ; — -1
CO =1ng dlag(r]rl ) 1'21’,2,..., rdr;i) ’ rg = Agln,o, CO =Ny Id ® JST ’

©=CoAPoy =31, 3ol' ... 5,17, ¥,=ng'ly, g=12,.d.

In the first stratum we have:
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C, = diag(C,;,Cyz ..., C1y), where Cy, = (kt)'N} N - ng'r,r,,  (2.8)

and
N1g=AgDr 3 C]g1=0’ g=1,2,...,d.

In the second stratum we have:

Cy = diag(Cy, Cypr-...Cpo), where Cy, = ¢ NyNy— (k)IN,N},, (2.9)
N?g = AgGI ¥ ngl = 0, g= 1,2,...,d.

In the third stratum we have:

Cs = diag(Cy,, Cyy,...,Cyy), Where Cyy =15 — £ 7'N, Ny, (2.10)

and

Cyy = diag(Cyy, Cygy,....Cops)s  Capy =15, — 27Ny, NI

g=12,...d, w=12,.,S, r’=diag(r,ry,...,1).

The estimability of a linear treatment function ¢t within the f-th stratum
can be verified by the criterion c’Cfo= ¢’ (cf. Rao and Mitra, 1971, Theorem
7.2.1).

From the property Ci1=0, f=1,2,3, it results that if the function e¢'t is

estimable it must be a contrast, i.e. ¢'l = 0. Hence, the treatment contrasts will
be considered mainly in the paper.

If the contrast c¢'t is estimable within the f-th stratum, then its BLUE within
that stratum has the form (cl’\-c)/- = ¢'ty, where1f = C;Qy is a solution of the normai
equation in stratum f. The within stratum variance of (c,’\t)f Is equal to y,¢'Cre,
ie. Varl(cw)l = ye'Cre for f=1,2,3.

The statistical analysis of experimental data usually consists of testing

general and particular hypotheses. The tests can be obtained from the within
stratum analysis of variance as given in Table 1.

The symbols occurring in Table 1 denote: SSY, = y’P;y — the total sum of
squares, SSsz Q’C,?Q — the treatment sum of squares, SSEf= SSYf— SST/‘ -
the error sum of squares, vrr=1(Cp, vp=r(P}), VEr= V= Vg, , for the f-th stra-
tum, /=0,1,2,3.

If the normal distribution of the random terms of the linear model (2.5) is
assumed, then it is easy to obtain an exact test (F-test) of the hypothesis



8 I. Mejza

Table 1
Analysis of variance in the stratum f
Source of variation d.f. S.S. E(S.S)
Treatments (in 1) Voy SSTf Vi Tpt t’Cfr
Error (inf) Ve SSEf Rl
Total (inf) Ve S8Y, VoYt r’Cfr

Hy: t'Cft =0, f=1,2,3, or the test of some subhypothesis defined by a contrast
c't estimable in that stratum, i.e., HBf: ¢t =0, where ¢'l1 =0 and ¢'C;C;=¢'.

The hypothesis HB/» can be tested in every stratum in which the contrast is
estimable. Also, a combined test can be used to improve the statistical properties
of the strata tests.

Because of (2.3), the particular vector defining contrasts among the environ-
ments, whole-plot and sub-plot treatments can be expressed as:
c=2q,9p,®h;, g=1,2,..d, w=12,.,S, j=12,.,T, where z is a normali-
zing constant, q ,, p,,, and h; are contrast vectors or vectors of ones of the length
d, S and T respectively. This structure is very useful in checking contrasts’
estimability in a stratum.

Applying the criterion ¢'CyCy = ¢’ of the estimability of a linear function ¢t

and C,Cy = naldiag(lr’l, Ir,..., Iry) we can see that some contrasts among the
environments are estimable in this stratum, for example, ¢’ = (v, -¥',0,...,0). In
the paper we will not test the hypotheses concerning environments because the
number of degrees of freedom for error is equal to zero. Some methods of testing
hypotheses in such situation are known. However, they are beyond the scope of
this paper.

From the structure of C]C,, it follows that in the first stratum no contrast
among the environments is estimable.

From the structure of C3C4, it results that in the third stratum no contrast
among environments and no contrast among levels of facter A (whole-plot treat-
ments) and none of their interaction contrasts are estimable. No more general
statements concerning contrasts’ estimability can be concluded from the struc-
ture of matrices C;, C, and Cj.

The particular complete cases are considered for example by Utz (1971),
Carmer et al. (1989), McIntosh (1983) and in some monographs, e.g. Gomez and
Gomez (1984). The linear models adopted to the series of split-plot experiments
are different from that considered in this paper.
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3. Planning of experiments

The allocation of treatments to the blocks and to the whole-plots in the g-th
environment (plan D, ) is described by two incidence matrices N, and

Ny, g=12,..,d. They play an important role in the planning of considered

experiments. So, they will be presented in details. Let us note that possible plans
D,, g=12,...,d, may be the same or different. If the chosen plans Dg are different
then, without computer help, no useful methods of proper experiment planning
can be given. At the beginning, let us consider some property of designs called
general balance (¢f. Houtman and Speed, 1983). It is connected with the rela-
tionship between the treatments structure and block structure of the design. The
generally balanced design has many desirable statistical properties. One of them
is connected with the eigenvalues (¢) and eigenvectors (w) of the matrices G,

calculated with respect to r?, i.e., C[Wi =& r'f’wi , 1=0,1,2,8; i=1,2,...,v. The linear

functions ¢; = r’w; are linearly independent and all orthogonal to 1. It means
that they span the subspace of vectors defining contrasts, often called basic
contrasts (cf. Pearce et al., 1974). In the generally balanced design the space of
vectors defining contrasts is the same in all strata. Because of that fact, we can
treat the eigenvalues ¢ as the stratum efficiency factors of the design. This
measure is very useful in the optimal choice of design D, in the g-th environment.

The generally balanced design will be considered in the paper only. The simple
way of checking the general balance property of a design was given by Mejza
(1992). Shortly, the design is generally balanced iff the matrices Cf, f=1,23,

mutually commute with respect to r?° i.e., Cfr'BCfv=C/,r"SC/‘, f=f,
ff =128,

As was mentioned earlier, the considered design can be incomplete with
respect to whole-plot treatments only, with respect to sub-plot treatments only
and finally, with respect to both kinds of treatments. For the last case, which is
the most general, it is difficult to give general methods of construction which do
not use computer. The first two cases are simpler and there are some useful
cases of designs worth taking into account. The two cases, called A and B, will
be considered separately.

In case A, we will have incompleteness with respect to whole-plot treatments
in the blocks and completeness with respect to sub-plot treatments in the whole-
plots.

In case B, the design considered is complete with respect to whole-plot treat-
ments and incomplete with respect to sub-plot treatments.



10 . I Mejza

3.1. Case A

The assumption concerning completeness of sub-plot treatments, ¢=T, leads
to some simplifications. We have Ny, =N,, ® 1, where N, are Sxb incidence

matrices of whole-plot treatments vs. blocks, and let us note, that Ny 1 =14,
where r4 , denotes the vector of whole-plot replications in the g-th environment,

g=12,...,d. Hence, we have:
Cig= (RT) '(Ng Ny o= 7' rary ) ®dp ,  Cop=T '(xh,~ k'Ny Ny ) @
Co=ra, ®Up-T'Jp), g=12,.d. 3.1)

Let us note that generally, planning of considered series of experiments is
equivalent to a proper choice of the incidence matrices for whole-plot treatments
in environments, i.e. Ny, , g=1,2,....d.

Now, to simplify the calculations, we consider the series, where the same
incidence matrix for whole-plot treatments in all environments is applied, i.e.
Nyy=Ny, g= 1,2,...,d. It leads to following simplifications: C]g = C"f, ng = Ch,
Cy=Ci, forg=12,.4d.

Let ¢,, denote the eigenvalue of the matrix C, = r§ - £7'N,N/, with respect to
rh, w=1.2,..,S.

From the structures of the matrices C;, Cy and Cj; (see (2.8)~(2.10)) and from
(3.1) we have:

1) the contrasts among whole-plot treatments (A) and interaction environ-
ments x whole-plot treatments contrasts (PxA) are estimated in the first and
second stratum with efficiency equal to 1 - ¢, and ¢,, , respectively,

2) the contrasts among the sub-plot treatments (B), two-way interaction
contrasts: whole-plot treatments x sub-plot treatments (AxB), environments x
sub-plot treatments (PxB), and three-way interaction contrasts: environments
x whole-plot treatments x sub-plot treatments (PxAxB), are estimated in the
third stratum with full efficiency.

As the particular case, let us consider the series of incomplete split-plot
designs where in all environments the same balanced incomplete block design
(BIB) for the whole-plot treatments is applied. Then all the occurrence matrices
NyNy=@-MI + ) are equal, where A=r(k-1) /(S-1) and r denotes the
number of whole-plot treatment replication in each environment. The efficiency
factors 1-¢,, and ¢, are equal to (S-k) /k(S-1) and S(k-1) / k(S-1), respectively,
w=1.2,..,5-1.

It will be convenient to introduce abbreviations to describe the properties of
balance of a design. Let E/(e,e) denote the property that e contrasts among the
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levels of factor E (or interaction contrasts) are estimated in the f-th stratum with
efficiency of ¢ or, in other words, we say that the design is E/(e,e)-balanced (if e
includes all contrasts then in some cases it is omitted).

Summarizing, the design considered above is A(S-1, (S-k) / k(S-1))-balanced,
AP, ((S-1)(d-1),(S-k) / k(S-1))-balanced, Ay (S-1, S(k-1) / k(S-1))-balanced, AP,
((S-1)(d-1), S(k-1) / k(S-1))-balanced. All other contrasts are estimated with full
efficiency.

Partially Balanced Incomplete Block Designs with Two Associate Classes
(PBIBD(2)) are other types of block designs useful to generate some series of the
considered incomplete split-plot designs.

Let us note that sometimes the levels of factor A are in fact the treatment
combinations of levels of two factors C and D, say, with m and q levels, respec-
tively. Then the treatment combinations can be expressed as:
A= CD,, h=12,..m, p= 1,2,...,q}. In this case we can use the subclasses of
the PBIBD(2) called the Group Divisible Designs (GDPBIBD(2)). The details of
planning and of the analysis of incomplete split-plot design generated by
GDPBIBD(2) are given by Mejza (1991).

Let us consider the GDPBIBD(2) with parameters (mq, r*, k", b", Ay, Ay) for
mq treatments divided into m groups of g treatments each. The design is such
that all pairs of the treatments belonging to the same group occur together in
A; blocks while pairs of treatments from different groups occur together in A,
blocks. The parameters £°, ", b* denote the block size, number of treatment
replications and number of blocks, respectively.

The levels of factor C can be treated as groups. In such an association scheme
the occurrence matrix of GDPBIBD(2) can be expressed as:

NN’ = U)()LO + (DILI + (Dsz N (32)

where wg, w;, wy are eigenvalues of matrix NN' so that wo =7k", with multi-
plicity 1, w; =77~ 2, with multiplicity m(g-1), wy = r'k*-v"N,, with multiplicity
m~1 (cf. Raghavarao, 1971), while the matrices L, L,, L, have the form

LO = U*JU',
L.l = m_lJm ® (Iq - q_qu) + (Inz i mlem) ® (Iq - qvqu)> (3'3)
L2 i q_l(lm— m—lJm.) ® Jq .

Using the occurrence matrix (3.2) instead of the N4N/ in (3.1) we have that

above design is:
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C,(m-1), wy/rk)- and Cy(m-~1), 1-w,/rk)-balanced,

Di(q-1, w;/rk)- and Dy(g-1, 1-w,/rk)-balanced,

CD,((m-1)(q-1), w;/rk)- and CDy((m-1)(g-1), 1-w; / rk)-balanced,
PC,(m-1), wy/rk)- and PCy(m-1), 1-ws/rk)-balanced,

PD(q-1, w;/rk)- and PDy(g-1, 1-w,/rk)-balanced,

PCD,((m-1)(g-1), w,/rk)- and PCDy((m-1)(g-1), 1-w,; / rk)-balanced.

All other contrasts are estimated with full efficiency in the second stratum.
3.2. Case B

Let the levels of factor B (sub-plot treatments) be arranged in some incomplete
block design where whole-plots are treated as blocks. Moreover, it will be assumed
that all levels of the factor A (whole-plot treatments) occur within blocks, i.e.,
k=S. In general, within the factor A levels different designs for the factor B levels
may be used. It follows that Ny, = [Ny, Npg, ..., Npgl', where Np,, is Txb
incidence matrix for sub-plot treatments within w-th whole-plot treatment
w=1,2,...,9) in the g-th environment (g=1,2,...,d). Nevertheless, to simplify the
calculations, we assume that occurrence matrices Ng,,,Np,,, are the same in each
environment, i.e. Np,, N, .= Ng,Np, for ww'=1,2,..,S and g=1,2,...,d.

From (2.8)—(2.10) the structures of matrices Clg, CQg and C3g are as follows:

Ciy = (1) 'ds ® (NgNp = ™05 ¥ ),
Coy = £ (15~ S7'Js) ® N Niz, 84

Co=Ts®(r}, -t 'Ng,Np), g=12,..d,

where rp, = Ng,1 denotes the vector of sub-plot replications, the same in each
whole-plot treatment in the g-th environment. .

Similarly as in case A, let us assume that all Ng,Njp, are the same in all
environments, i.e. Ng N, = NgNj for g=1,2,...,d. This leads to Cp = C;f, for
[f=123; g=1.2,..d.

Let ¢; denote the eigenvalue of the matrix Cp = r) - t 'NpNY} with respect to
ry, j=1,2,..,T.

From the structure of matrices (3.4) we have that in this type of designs the

contrasts among the levels of factor B are estimated with efficiency equal to
1-¢; in the first stratum and with efficiency ¢; in the third stratum. Similarly,

the two-way interaction contrasts, environments x sub-plot treatments (PxB),
are estimated with efficiencies 1-¢; and ¢; in the first and third strata, respec-
tively, while whole-plot treatments x sub-plot treatments (AxB), and three-way
interaction contrasts, environment x whole-plot treatments x sub-plot treatments
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(PxAxB), are estimated in the second and third strata with efficiencies 1-g;and
&;, respectively. All other contrasts, i.e. among whole-plot treatments (A) and
two-way interaction contrasts, environments x whole-plot treatments (PxA), are
estimated with full efficiency in the second stratum.

Let us consider two particular cases of block designs, the same as previously,
i.e. BIB design and GDPBIBD(2), to generate the incomplete split-plot designs.

The series of incomplete split-plot designs generated by BIB design, i.e. when
NgNg = (-MIp + Mg, are:

B(T-1, (T-t)/t(T-1))-balanced,

PB((T-1)(d-1), (T-t) [ &(T-1))-balanced,

By(T-1, T(z-1)/ (T-1))-balanced,

PB4((T-1)(d-1), T(t-1)/#(T-1))-balanced,

ABo((S-1)(T-1), (T-t) / #(T-1))-balanced,

AB3((S-1)(T-1), T(t-1) / t(T-1)-balanced,

PAB((d-1)(S-1XT-1), (T-t)/¢(T-1))-balanced,

PAB;((d-1)(S-1)(T-1), T(t-1) / {(T-1))-balanced.

All other contrasts are estimated with full efficiency in the second stratum.
Similarly, the series of incomplete split-plot designs generated by
GDPBIBD(2) are:
Ci(m-1, wy/rt- and Cy(m-1, 1-wy/rt)-balanced,
Dy(g-1, w;/rt)- and Dg(g-1, 1-m,/rt)-balanced,
CD,((m-1)(g-1), w,/rt)- and CD4((m-1)(q-1), 1-w,/rt)-balanced,
ACy((S-1)(m-1), wy/ rt)- and ACy((S-1)(m-1), 1-w,/rt)-balanced,
ADy((S-1)(g-1), w;/rt)- and AD4((S-1)(g-1), 1-w;/rt)-balanced,
ACDy((S-1)(m-1)(g-1), w;/rt)- and
ACD4((S-1)(m-1)(g-1), 1-w;/rt)-balanced,
PC\((d-1)(m-1), wy/rt)- and PCy((d-1)(m-1), 1-wy/rt)-balanced,
PD((d-1)(g-1), o /rt)- and PD4((d-1)(g-1), 1-m,/rt)-balanced,
PCD((d-1)(m-1)(g-1), w;/rt)- and PCD4((d-1)(m-1)(g-1), 1-w,/rt)-balanced,
PAC((d-1)(S-1)(m-1), wy/rt)- and
PACy((d-1)(S-1)(m-1), 1-wg/rt)- balanced,
PADy((d-1)(S-1)(g-1), oy /rt)- and PAds((d-1)(S-1)(g-1), 1-w,/rt)- balanced,
PACDy((d-1)(S-1)(m-1)(g-1), w;/rt)- and
PACD4((d-1)(S-1)(m-1)g-1), 1-w,/rt)-balanced.
Let us note that there are many different efficiencies connected with treatment

contrasts estimation. These efficiencies allow us to choose the proper design
D,, g=1,2,....d. Moreover, for some of the GDPBIBD(2) the efficiency factor g; is
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equal to one. In this case the contrasts connected with this eigenvalue are

estimated with full efficiency. The plans of PBIBD(2) are given by Clatworthy
(1973).

4. Example

Let us consider series of experiments carried out in incomplete split-plot
design, incomplete with respect to sub-plot treatments (Case B). The example is
artificial and serves to illustrate the statistical properties of the series.

Let us consider a design where three whole-plot treatments (S=3) and six
sub-plot treatments (I'=6) have to be observed in three locations (d=3). For each
location, the experimental material consists of b=10 blocks. Each block has three
(k=3) whole-plots and each whole-plot has three (¢=3) sub-plots. We assume that
the same (with precision to a permutation of rows and/or columns of the incidence
matrix) incomplete split-plot design will be used in all locations.

According to the structure of the experimental material we can use the design
described by the incidence matrix N; of the form N; = 13 ® N, where Np is the
incidence matrix of the BIB design (Plan 11.4, Cochran and Cox, 1957) for the
sub-plot treatments. Exactly we have

11111000600
1100011100
0011011010
0010110101
1000101011
0101000111

The treatment combinations are replicated 5 times at each location. The
matrix C{ has the form:

XXX
Ci=(1/18)| XXX |,
XXX

where X = 61 - Jg. The matrix C} is of the form:

ZMM
Ci=IMZM |,
MMZ
where Z = (2/9)(8I + 2Jg), M =(~1/9)(3I; + 2J;). The matrix C% has the form
C§ = (2/3)diag(X, X, X) , where X is as above.
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Table 2
Stratum efficiency factors
Type of contrast “gs
first second third

A - 1
B 0.2 --- 0.8
AxB - 0.2 0.8
PxA - 1 -
PxB 0.2 0.8
PxAxB --- 0.2 0.8

From the structure of these matrices we can obtain the efficiency factors,
which are given in Table 2.

The contrasts between locations are estimated with full efficiency (=1) in the
zero stratum. .

Nearly all information concerning sub-plot treatment effects and different
interaction effects with these treatments is included in the third stratum. In this
stratum the precision of comparisons is the highest. It means that in the overall
analysis we can either use whole information from all strata (for example by
combining the information) or to limit our inference to the third stratum (accept-
ing some loss in precision).
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